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Abstract 

 
Fast solution of linear equations having the large sparse coefficient matrices is a vital 

requirement of advanced computations in science and engineering. The matrix-vector 

product (SMVP) is the most important kernel operation for theiterative linear solvers, and 

thus its performance has a key noted effect on the performance of linear solvers.  

 

The efficient parallelization of SMVP is of prime significance to the scientific computing 

community. The main goal that is achieved with parallelization is to perform the 

matrixvector product faster than what is possible on a single processor. To achieve this 

on a distributed memory computer, we concentrate on minimizing the inter-processor 

communication, achieving a good balance of the workload, overlapping communication 

with computation along with optimizing single processor performance. 
 

The thesis consists of two parts presenting the optimization and improvement of sparse 

matrix-vector multiplication performance on single as well as multi processors 

respectively. Operations on sparse matrices tend to exhibit lower performance on general 

purpose processors due to sparse nature of the data structure that generates large number 

of cache misses and large number of memory accesses. The performance degradation of 

sparse matrix algorithms is also due to the poor temporal and spatial locality. In a nut 

shell the performance of SMVP is highly dependent on the nonzero structure of the 

sparse matrix, the organization of the data and its computation. The research 

demonstrates that the reorganization of the matrix in terms of blocks and the resulting 

computation around the blocks of the matrix is valuable for optimization.  

 

To alleviate the existent problems and to get performance improvement of SMVP on a 

single scalar processor, we propose two sparse storage formats, namely the grouped 

compressed row storage with permutation (GCRSP) and the blocked compressed row 



storage with permutation (BCRSP). The proposed formats are designed to efficiently 

exploit the benefits of blocking i.e. the block-based compressed row storage (BCRS), 

such as reduced indirect addressing, increased spatial and temporal locality along with 

eliminating the corresponding overheads (both zero-overhead of BCRS and loop-

overhead of sparse block based compressed row storage, SBCRS). In an effort of 

achieving this goal, the approach used is to reorder the matrix entries before blocking to 

get maximum possible dense blocks.  
 

The thesis reports an extensive performance study over variety of matrices taken from the 

matrix market. It has been observed that operating on the group of rows in GCRSP 

improves the performance over simple compressed row storage (CRS) and compressed 

row storage with permutation (CRSP) with an average of 16% and 25%, respectively. 

Moreover, due to blocking in BCRSP, the performance improvements of an average of 

32%, 41% and 20% are observed over CRS, CRSP and GCRSP respectively. 
 

For the good load balancing and low communication cost, reordering of sparse matrices 

according to their sparsity structure is highly important. For this purpose we proposed 

reordering based partitioning strategies that tend to exploit sparsity of input matrix 

presenting the balanced load distribution along with the reduced communication cost. 

The proposed models permuted row (PR), permuted column (PC) and permuted matrix 

(PM) produce an average of 49% better load balancing and 14% better communication 

than the corresponding naïve row (NR), naïve column (NC) and checker board (CH) 

models. Moreover, they produce same level of balanced load and an average of 78% 

better communication than the corresponding balanced naïve partitioning i.e. row block 

(RB), column block (CB) and balanced checker board (BCH) models. On the whole an 

average of 30% performance gain for parallel SMVP is achieved by using BCRSP format 

along with permuted row (PR) partitioning over the implementation using CRS format 

with naïve row (NR) partitioning using cluster of eight processors. 


